Schematischer Aufbau der Dosiervorrichtung: Die neuartige Methode kombiniert die additive Fertigung mit der thermischen Nachbehandlung.

Ausgabe 03 | 2023

Elektrisch leitfähige Bauteile aus dem 3D-Drucker

Technische Hochschule Köln

In Branchen wie der Automobilindustrie oder in der Unterhaltungselektronik kommt immer häufiger der 3D-Drucker zum Einsatz. Bislang können damit unkompliziert mechanische Teile wie Gehäuse oder Halterungen hergestellt werden. Auch aufwändige elektronische Teile wie Antennen oder Leitungen werden mittels 3D-Druck produziert – in der Regel allerdings in einem zweistufigen Prozess. Um dies einfacher, schneller und kostengünstiger zu gestalten, hat ein interdisziplinäres Team der TH Köln ein einstufiges Herstellungsverfahren konzipiert und zum Patent angemeldet. Im Vorhaben «InteSint-3D» wird dieses nun gemeinsam mit weiteren Projektpartnern optimiert.

Um elektronische Komponenten mithilfe von 3D-Druckern herzustellen, wird im herkömmlichen Verfahren zunächst ein nichtleitendes Trägerbauteil erzeugt und anschliessend mit einer dünnen Struktur, zum Beispiel einer speziellen Tinte oder einem Klebstoff, versehen. Diese muss in einem weiteren Schritt bei etwa 200° gesintert – also thermisch nachbehandelt – werden, damit sie elektrisch leitfähig wird. «Die Probleme dieser Vorgehensweise sind, dass die für die Sinterung benötigten Geräte und Anlagen sehr teuer sind. Zudem besteht die Gefahr, dass sich das Gehäuseteil durch die nachgelagerte Behandlung verformt. Deshalb bedarf es neuer Herstellungsmethoden», sagt Prof. Dr. Stefan Grünwald vom Institut für Produktentwicklung und Konstruktionstechnik der TH Köln.
Ein interdisziplinäres Team der TH Köln hat daher ein innovatives einstufiges Verfahren mit einer dazugehörigen Vorrichtung konzipiert und beides zum Patent angemeldet. Die neuartige Methode kombiniert die additive Fertigung mit der thermischen Nachbehandlung. «Bei der von uns entwickelten technischen Lösung wird die beim 3D-Druck ohnehin schon vorhandene Prozesswärme zur Materialsinterung der leitfähigen Strukturen genutzt», erklärt Stefan Grünwald. «So können Kosten eingespart werden, weil keine Sinteröfen mehr benötigt werden und es weniger Ausschussware durch verformte Bauteile gibt. Zudem gewinnt man Zeit, weil der nachgelagerte Sinterprozess wegfällt.»

Neues Verfahren wurde bereits erfolgreich getestet
Erste Versuche mit einem Prototyp – einem handelsüblichen 3D-Drucker, der um ein Dosiersystem ergänzt wurde – zeigen, dass das neuartige Verfahren grundsätzlich funktioniert, wie Stefan Grünwald erläutert: «Wir haben neben dem 3D-Drucker eine Kartusche angebracht, die mit Silberleitklebstoff gefüllt ist. Während des Druckprozesses wird dieser mit einer Dosiernadel in die gedruckten Filamentschichten integriert, sodass eine leitfähige Struktur entsteht. Die Spitze der Nadel liegt dabei unmittelbar in der Nähe der Extruderdüse des Druckers, aus dem das Filament kommt. So kann der Klebstoff die Wärme des geschmolzenen Filaments nutzen und wird beim Verlassen der Dosiernadel gesintert.»
Obwohl sich das verwendete System noch in der Entwurfsphase befindet, konnten mit ihm bereits komplexe Geometrien von Bauteilen mit zusätzlichen elektrischen Funktionen hergestellt werden – beispielsweise Antennen oder Leitungen für die Hochfrequenztechnik. Im Projekt «InteSint-3D» soll der Prototyp nun weiterentwickelt werden, um reproduzierbare Ergebnisse von hoher Qualität zu erzeugen. «Wir werden in den nächsten Schritten unter anderem Parameter, beispielsweise in der Dosierung, optimieren. Zudem wollen wir Anforderungen an das leitfähige Material erarbeiten. Muss es ein Silberleitklebstoff sein? Welche Besonderheiten muss er haben? Und wie muss die in das Gehäuse eingebettete Struktur aussehen? All diese Fragen werden wir jetzt gemeinsam mit unseren Projektpartnern erläutern», so Stefan Grünwald.

Über das Projekt
Das Vorhaben «Entwicklung eines neuartigen additiven Auftragsverfahren von leitfähigen Strukturen mit integriertem Sinterprozess» (InteSint-3D) wird von Prof. Dr. Stefan Grünwald vom Institut für Produktentwicklung und Konstruktionstechnik der TH Köln koordiniert. Innerhalb der Hochschule ist zudem Prof. Dr. Rainer Kronberger vom Institut für Nachrichtentechnik der TH Köln beteiligt.
Projektpartner sind die Continental Advanced Antenna GmbH, die Marco Systemanalyse und Entwicklung GmbH, die AIM3D GmbH, die INTERPRINT GmbH, die Kleb- und Giessharztechnik Dr. Ludeck GmbH, die M2M-Germany GmbH, die Reimesch Kommunikationssysteme GmbH und die PHYSEC GmbH. Das Vorhaben wird bis 2026 mit rund 660’000 Euro durch die Massnahme «Forschung an Fachhochschule in Kooperation mit Unternehmen» (FH-Kooperativ) vom Bundesministerium für Bildung und Forschung (BMBF) gefördert.

INFOS | KONTAKT
Technische Hochschule Köln
Claudiusstrasse 1
D-50678 Köln
T +49 (0)221-8275-0
www.th-koeln.de

Februar

KPA, Ulm

Marktplatz für Design, Entwicklung, und Beschaffung von Kunststoffprodukten
28. und 29. Februar
www.kpa-messe.de

März

all about automation, Friedrichshafen

Fachmesse für Industrieautomation in der internationalen Bodenseeregion
5. und 6. März
www.allaboutautomation.de

LOPEC, München

Internationale Fachmesse und Kongress für gedruckte Elektronik
5. bis 7. März
www.lopec.com

emv, Köln

Internationale Fachmesse mit Workshop für Elektromagnetische Verträglichkeit
12. bis 14. März
www.mesago.de

W3+ Fair, Wetzlar

Messe rund um die Technologien Optik, Photonik, Elektronik und Mechanik
13. und 14. März
www.w3-messe.de